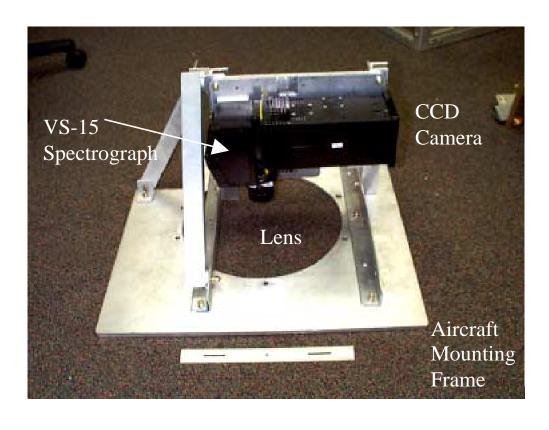


Calibration, Characterization and first Results with the Ocean PHILLS Hyperspectral Imager

Curtiss O. Davis¹, Mary Kappus¹, Jeffery Bowles¹, John Fisher², John Antoniades³ and Megan Carney⁴

¹Code 7212, Naval Research Laboratory, Washington, D. C. ²Brandywine Optical Technologies, P.O. Box 459, West Chester, PA 19381 ³APTI, 1250 24th St. N. W., Washington, D.C. 20037 ⁴SAIC, Chantilly, VA

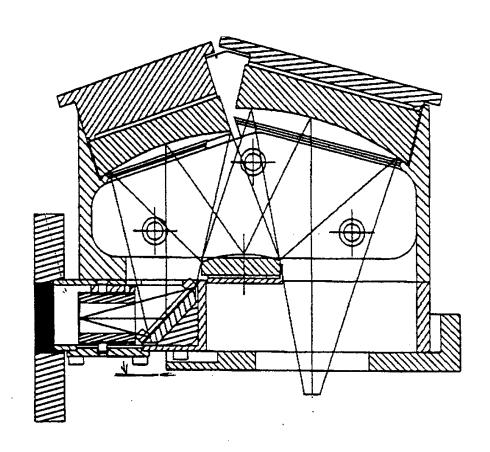
Presentation outline

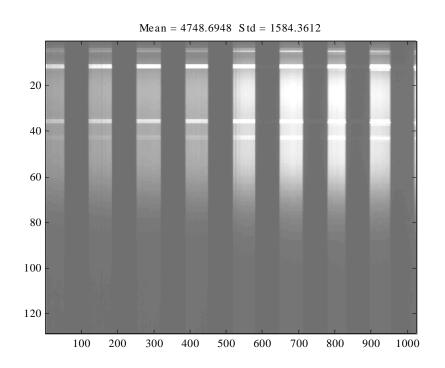

Goals:

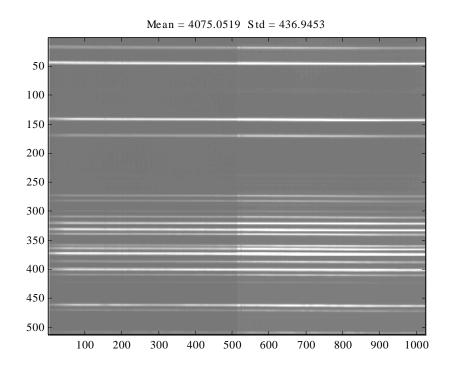
- To develop, calibrate and test the Ocean PHILLS, a new hyperspectral imager specifically designed for imaging the coastal ocean
- To test the performance of the Ocean PHILLS during the CoBOP field experiment at Lee Stocking Island in the Bahamas

Outline:

- The Ocean PHILLS hyperspectral imager
- Characterization and calibration
- Example Images from Lee Stocking Island
- Summary and future work

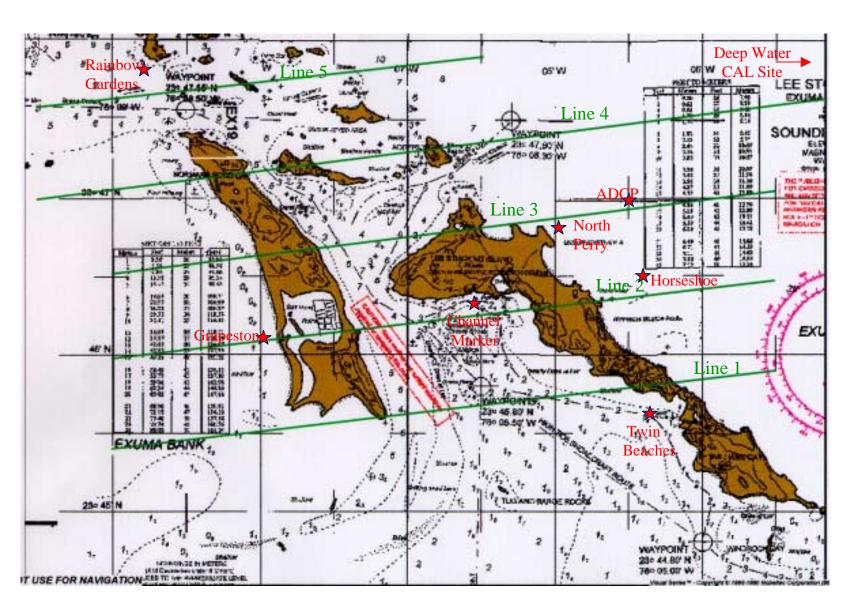

Ocean Portable Hyperspectral Imager for Low-Light Spectroscopy (Ocean PHILLS)


- Ocean PHILLS is a push-broom imager
- f 1.4 high quality video camera lens with a 30 degree field of view as the fore optic
- all reflective spectrograph with a convex grating in an Offner configuration to produce a distortion free image (Now available through American Holographic, Fitchburg, MA)
- 1024 x 1024 thinned backside illuminated CCD camera (Pixel Vision, Inc, Beaverton, OR)
- Images 1000 pixels cross track and is typically flown at 3000 m altitude yielding 1.5 m GSD and a 1500 m wide sample swath.
- The data is captured with a frame grabber in a high performance windows-NT computer with a 27 GB RAID storage system

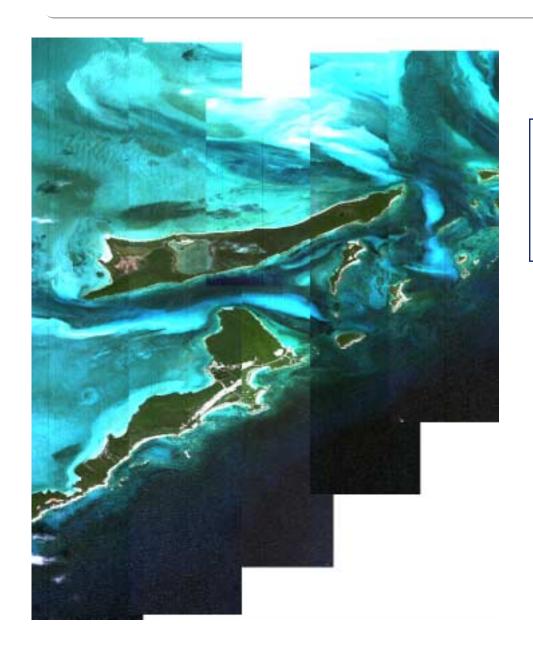

The HyperSpec[™] VS-15 Spectrograph

HyperSpec VS-15 Specifications	
size	65 x 80 x 100 mm
weight	24 oz (w/o camera or lens)
Field Size	12 mm
Dispersion	400 – 1000 nm over 12
Aperature	mm f/2
Spot Size	<12 microns rms
Keystone Distortion	<0.1%
Smile Distortion	<0.1%
Stray Light	<0.001%
Polarization	<5%

Calibration Images and Geometric Performance

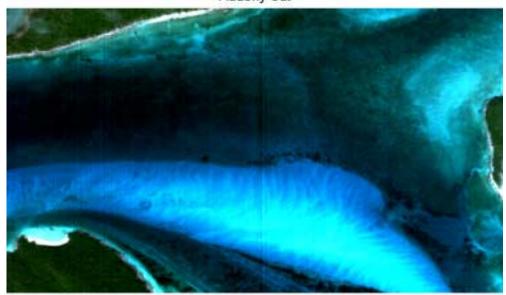

Performance Metric at f/4	Value
RMS Spot size (spatial direction)	2 pixels (24 microns)
RMS Spot size (spectral direction)	2 unbinned pixels (24 microns)
Keystone Distortion	< 1 pixel
Smile Distortion	< 1 pixel
Rotation (center to edge)	1 unbinned pixel

The Antonov AN-2 (Annie)



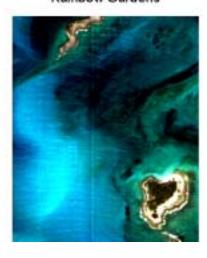
- Soviet Designed and Polish built.
- Worlds largest production biplane.
- Operated by Bosch Aerospace, Inc.
- Nominally data was collected at 3000 m at 90 knots.
- Slow, steady and reliable.

Lee Stocking Island Flight Lines


Mosaic of Bahamas Study Area

Lee Stocking Island and Norman's Pond Cay 1 June, 1999, 9:00 - 10:00 am NRL Ocean PHILLS hyperspectral data shown as true Color RGB image

Details of Study Areas



1.5 m GSD Ocean PHILLS data resolves, sand waves, grass beds and coral heads in this complex environment.

Twin Beaches

Rainbow Gardens

Summary

- These first results with the Ocean PHILLS hyperspectral imager are promising:
 - Adequate SNR and sensitivity for ocean imaging,
 - HyperSpec[™] VS-15 Spectrograph appears to meet design requirements,
 - Minor alignment adjustments could improve already good spectral alignment and spot size.
- Valuable data set collected during the Lee Stocking Island experiment.
 - Large team of scientists beginning to exploit this data set
- Future work:
 - Redesign camera to spectrograph mount to improve alignment.
 - Major focus on data processing and ocean algorithm development.